module Text.Parse.ByteString
  ( -- * The Parse class is a replacement for the standard Read class. 
    --   This particular instance reads from ByteString rather than String.
    -- $parser
    TextParser	-- synonym for Text.ParserCombinators.Poly.ByteString
  , Parse(..)	-- instances: (), (a,b), (a,b,c), Maybe a, Either a, [a],
		--            Int, Integer, Float, Double, Char, Bool
  , parseByRead	-- :: Read a => String -> TextParser a
  , readByParse -- :: TextParser a -> ReadS a
  , readsPrecByParsePrec -- :: (Int->TextParser a) -> Int -> ReadS a
    -- ** Combinators specific to bytestring input, lexed haskell-style
  , word	-- :: TextParser String
  , isWord	-- :: String -> TextParser ()
  , literal	-- :: String -> TextParser ()
  , optionalParens	-- :: TextParser a -> TextParser a
  , parens	-- :: Bool -> TextParser a -> TextParser a
  , field	-- :: Parse a => String -> TextParser a
  , constructors-- :: [(String,TextParser a)] -> TextParser a
  , enumeration -- :: Show a => String -> [a] -> TextParser a
    -- ** Parsers for literal numerics and characters
  , parseSigned
  , parseInt
  , parseDec
  , parseOct
  , parseHex
  , parseUnsignedInteger
  , parseFloat
  , parseLitChar
  , parseLitChar'
    -- ** Re-export all the more general combinators from Poly too
  , module Text.ParserCombinators.Poly.ByteStringChar
    -- ** ByteStrings and Strings as whole entities
  , allAsByteString
  , allAsString
  ) where

import Data.Char as Char (isUpper,isDigit,isOctDigit,isHexDigit,digitToInt
                         ,isSpace,isAlpha,isAlphaNum,ord,chr,toLower)
import Data.List (intersperse)
import Data.Ratio
import qualified Data.ByteString.Lazy.Char8 as BS
import Data.ByteString.Lazy.Char8 (ByteString)
import Text.ParserCombinators.Poly.ByteStringChar

------------------------------------------------------------------------
-- $parser
-- The Parse class is a replacement for the standard Read class.  It is a
-- specialisation of the (poly) Parser monad for ByteString input.
-- There are instances defined for all Prelude types.
-- For user-defined types, you can write your own instance, or use
-- DrIFT to generate them automatically, e.g. {-! derive : Parse !-}

-- | A synonym for a ByteString Parser, i.e. bytestring input (no state)
type TextParser a = Parser a

-- | The class @Parse@ is a replacement for @Read@, operating over String input.
--   Essentially, it permits better error messages for why something failed to
--   parse.  It is rather important that @parse@ can read back exactly what
--   is generated by the corresponding instance of @show@.  To apply a parser
--   to some text, use @runParser@.
class Parse a where
    -- | A straightforward parser for an item.  (A minimal definition of
    --   a class instance requires either |parse| or |parsePrec|.  In general,
    --   for a type that never needs parens, you should define |parse|, but
    --   for a type that _may_ need parens, you should define |parsePrec|.)
    parse     :: TextParser a
    parse       = Int -> TextParser a
forall a. Parse a => Int -> TextParser a
parsePrec 0
    -- | A straightforward parser for an item, given the precedence of
    --   any surrounding expression.  (Precedence determines whether
    --   parentheses are mandatory or optional.)
    parsePrec :: Int -> TextParser a
    parsePrec _ = TextParser a -> TextParser a
forall a. TextParser a -> TextParser a
optionalParens TextParser a
forall a. Parse a => TextParser a
parse
    -- | Parsing a list of items by default accepts the [] and comma syntax,
    --   except when the list is really a character string using \"\".
    parseList :: TextParser [a]	-- only to distinguish [] and ""
    parseList  = do { String -> TextParser String
isWord "[]"; [a] -> TextParser [a]
forall (m :: * -> *) a. Monad m => a -> m a
return [] }
                   TextParser [a] -> TextParser [a] -> TextParser [a]
forall a. Parser a -> Parser a -> Parser a
`onFail`
                 do { String -> TextParser String
isWord "["; String -> TextParser String
isWord "]"; [a] -> TextParser [a]
forall (m :: * -> *) a. Monad m => a -> m a
return [] }
                   TextParser [a] -> TextParser [a] -> TextParser [a]
forall a. Parser a -> Parser a -> Parser a
`onFail`
                 TextParser String
-> TextParser String
-> TextParser String
-> TextParser a
-> TextParser [a]
forall (p :: * -> *) bra sep ket a.
PolyParse p =>
p bra -> p sep -> p ket -> p a -> p [a]
bracketSep (String -> TextParser String
isWord "[") (String -> TextParser String
isWord ",") (String -> TextParser String
isWord "]")
                            (TextParser a -> TextParser a
forall a. TextParser a -> TextParser a
optionalParens TextParser a
forall a. Parse a => TextParser a
parse)
                   TextParser [a] -> (String -> String) -> TextParser [a]
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("Expected a list, but\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)

-- | If there already exists a Read instance for a type, then we can make
--   a Parser for it, but with only poor error-reporting.  The string argument
--   is the expected type or value (for error-reporting only).  Use of this
--   wrapper function is NOT recommended with ByteString, because there
--   is a lot of inefficiency in repeated conversions to/from String.
parseByRead :: Read a => String -> TextParser a
parseByRead :: String -> TextParser a
parseByRead name :: String
name =
    (ByteString -> Result ByteString a) -> TextParser a
forall a. (ByteString -> Result ByteString a) -> Parser a
P (\s :: ByteString
s-> case ReadS a
forall a. Read a => ReadS a
reads (ByteString -> String
BS.unpack ByteString
s) of
                []       -> ByteString -> String -> Result ByteString a
forall z a. z -> String -> Result z a
Failure ByteString
s ("no parse, expected a "String -> String -> String
forall a. [a] -> [a] -> [a]
++String
name)
                [(a :: a
a,s' :: String
s')] -> ByteString -> a -> Result ByteString a
forall z a. z -> a -> Result z a
Success (String -> ByteString
BS.pack String
s') a
a
                _        -> ByteString -> String -> Result ByteString a
forall z a. z -> String -> Result z a
Failure ByteString
s ("ambiguous parse, expected a "String -> String -> String
forall a. [a] -> [a] -> [a]
++String
name)
      )

-- | If you have a TextParser for a type, you can easily make it into
--   a Read instance, by throwing away any error messages.  Use of this
--   wrapper function is NOT recommended with ByteString, because there
--   is a lot of inefficiency in conversions to/from String.
readByParse :: TextParser a -> ReadS a
readByParse :: TextParser a -> ReadS a
readByParse p :: TextParser a
p = \inp :: String
inp->
    case TextParser a -> ByteString -> (Either String a, ByteString)
forall a. Parser a -> ByteString -> (Either String a, ByteString)
runParser TextParser a
p (String -> ByteString
BS.pack String
inp) of
        (Left err :: String
err,  rest :: ByteString
rest) -> []
        (Right val :: a
val, rest :: ByteString
rest) -> [(a
val, ByteString -> String
BS.unpack ByteString
rest)]

-- | If you have a TextParser for a type, you can easily make it into
--   a Read instance, by throwing away any error messages.  Use of this
--   wrapper function is NOT recommended with ByteString, because there
--   is a lot of inefficiency in conversions to/from String.
readsPrecByParsePrec :: (Int -> TextParser a) -> Int -> ReadS a
readsPrecByParsePrec :: (Int -> TextParser a) -> Int -> ReadS a
readsPrecByParsePrec p :: Int -> TextParser a
p = \prec :: Int
prec inp :: String
inp->
    case TextParser a -> ByteString -> (Either String a, ByteString)
forall a. Parser a -> ByteString -> (Either String a, ByteString)
runParser (Int -> TextParser a
p Int
prec) (String -> ByteString
BS.pack String
inp) of
        (Left err :: String
err,  rest :: ByteString
rest) -> []
        (Right val :: a
val, rest :: ByteString
rest) -> [(a
val, ByteString -> String
BS.unpack ByteString
rest)]


-- | One lexical chunk (Haskell-style lexing).
word :: TextParser String
{-
word = P (\s-> case lex (BS.unpack s) of
                   []         -> Failure s  ("no input? (impossible)")
                   [("","")]  -> Failure s ("no input?")
                   [("",_)]   -> Failure s  ("lexing failed?")
                   ((x,_):_)  -> Success (BS.drop (fromIntegral (length x)) s) x
         )
-}
word :: TextParser String
word = (ByteString -> Result ByteString String) -> TextParser String
forall a. (ByteString -> Result ByteString a) -> Parser a
P (ByteString -> Result ByteString String
p (ByteString -> Result ByteString String)
-> (ByteString -> ByteString)
-> ByteString
-> Result ByteString String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Char -> Bool) -> ByteString -> ByteString
BS.dropWhile Char -> Bool
isSpace)
  where
    p :: ByteString -> Result ByteString String
p s :: ByteString
s | ByteString -> Bool
BS.null ByteString
s = ByteString -> String -> Result ByteString String
forall z a. z -> String -> Result z a
Failure ByteString
BS.empty "end of input"
        | Bool
otherwise =
      case (ByteString -> Char
BS.head ByteString
s, ByteString -> ByteString
BS.tail ByteString
s) of
        ('\'',t :: ByteString
t) -> let (P lit :: ByteString -> Result ByteString Char
lit) = Parser Char
parseLitChar' in (Char -> String)
-> Result ByteString Char -> Result ByteString String
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Char -> String
forall a. Show a => a -> String
show (ByteString -> Result ByteString Char
lit ByteString
s)
        ('\"',t :: ByteString
t) -> let (str :: ByteString
str,rest :: ByteString
rest) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span (Bool -> Bool
not (Bool -> Bool) -> (Char -> Bool) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Char -> String -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` "\\\"")) ByteString
t
                    in String -> ByteString -> Result ByteString String
litString ('\"'Char -> String -> String
forall a. a -> [a] -> [a]
: ByteString -> String
BS.unpack ByteString
str) ByteString
rest
        ('0',s :: ByteString
s) -> case ByteString -> Maybe (Char, ByteString)
BS.uncons ByteString
s of
                     Just ('x',r :: ByteString
r) -> ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
t ("0x"String -> String -> String
forall a. [a] -> [a] -> [a]
++ByteString -> String
BS.unpack ByteString
ds)
                                            where (ds :: ByteString
ds,t :: ByteString
t) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isHexDigit ByteString
r
                     Just ('X',r :: ByteString
r) -> ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
t ("0X"String -> String -> String
forall a. [a] -> [a] -> [a]
++ByteString -> String
BS.unpack ByteString
ds)
                                            where (ds :: ByteString
ds,t :: ByteString
t) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isHexDigit ByteString
r
                     Just ('o',r :: ByteString
r) -> ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
t ("0o"String -> String -> String
forall a. [a] -> [a] -> [a]
++ByteString -> String
BS.unpack ByteString
ds)
                                            where (ds :: ByteString
ds,t :: ByteString
t) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isOctDigit ByteString
r
                     Just ('O',r :: ByteString
r) -> ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
t ("0O"String -> String -> String
forall a. [a] -> [a] -> [a]
++ByteString -> String
BS.unpack ByteString
ds)
                                            where (ds :: ByteString
ds,t :: ByteString
t) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isOctDigit ByteString
r
                     _ -> String -> ByteString -> Result ByteString String
lexFracExp ('0'Char -> String -> String
forall a. a -> [a] -> [a]
: ByteString -> String
BS.unpack ByteString
ds) ByteString
t
                                            where (ds :: ByteString
ds,t :: ByteString
t) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isDigit ByteString
s
        (c :: Char
c,s :: ByteString
s) | Char -> Bool
isIdInit Char
c -> let (nam :: ByteString
nam,t :: ByteString
t) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isIdChar ByteString
s in
                                                   ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
t (Char
cChar -> String -> String
forall a. a -> [a] -> [a]
: ByteString -> String
BS.unpack ByteString
nam)
              | Char -> Bool
isDigit  Char
c -> let (ds :: ByteString
ds,t :: ByteString
t)  = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isDigit ByteString
s in
                                                 String -> ByteString -> Result ByteString String
lexFracExp (Char
cChar -> String -> String
forall a. a -> [a] -> [a]
: ByteString -> String
BS.unpack ByteString
ds) ByteString
t
              | Char -> Bool
isSingle Char
c -> ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
s (Char
cChar -> String -> String
forall a. a -> [a] -> [a]
:[])
              | Char -> Bool
isSym    Char
c -> let (sym :: ByteString
sym,t :: ByteString
t) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isSym ByteString
s in
                                                   ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
t (Char
cChar -> String -> String
forall a. a -> [a] -> [a]
: ByteString -> String
BS.unpack ByteString
sym)
              | Bool
otherwise  -> ByteString -> String -> Result ByteString String
forall z a. z -> String -> Result z a
Failure (Char -> ByteString -> ByteString
BS.cons Char
c ByteString
s) ("Bad character: "String -> String -> String
forall a. [a] -> [a] -> [a]
++Char -> String
forall a. Show a => a -> String
show Char
c)

    isSingle :: Char -> Bool
isSingle c :: Char
c  =  Char
c Char -> String -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` ",;()[]{}`"
    isSym :: Char -> Bool
isSym    c :: Char
c  =  Char
c Char -> String -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` "!@#$%&*+./<=>?\\^|:-~"
    isIdInit :: Char -> Bool
isIdInit c :: Char
c  =  Char -> Bool
isAlpha Char
c Bool -> Bool -> Bool
|| Char
c Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
== '_'
    isIdChar :: Char -> Bool
isIdChar c :: Char
c  =  Char -> Bool
isAlphaNum Char
c Bool -> Bool -> Bool
|| Char
c Char -> String -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` "_'"

    lexFracExp :: String -> ByteString -> Result ByteString String
lexFracExp acc :: String
acc s :: ByteString
s = case ByteString -> Maybe (Char, ByteString)
BS.uncons ByteString
s of
                           Just ('.',s' :: ByteString
s') ->
                               case ByteString -> Maybe (Char, ByteString)
BS.uncons ByteString
s' of
                                   Just (d :: Char
d,s'' :: ByteString
s'') | Char -> Bool
isDigit Char
d ->
                                        let (ds :: ByteString
ds,t :: ByteString
t) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isDigit ByteString
s'' in
                                        String -> ByteString -> Result ByteString String
lexExp (String
accString -> String -> String
forall a. [a] -> [a] -> [a]
++'.'Char -> String -> String
forall a. a -> [a] -> [a]
:Char
dChar -> String -> String
forall a. a -> [a] -> [a]
: ByteString -> String
BS.unpack ByteString
ds) ByteString
t
                                   _ -> String -> ByteString -> Result ByteString String
lexExp String
acc ByteString
s'
                           _ -> String -> ByteString -> Result ByteString String
lexExp String
acc ByteString
s

    lexExp :: String -> ByteString -> Result ByteString String
lexExp acc :: String
acc s :: ByteString
s = case ByteString -> Maybe (Char, ByteString)
BS.uncons ByteString
s of
        Just (e :: Char
e,s' :: ByteString
s') | Char
e Char -> String -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` "eE" ->
                    case ByteString -> Maybe (Char, ByteString)
BS.uncons ByteString
s' of
                        Just (sign :: Char
sign,dt :: ByteString
dt)
                            | Char
sign Char -> String -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` "+-" ->
                                  case ByteString -> Maybe (Char, ByteString)
BS.uncons ByteString
dt of
                                      Just (d :: Char
d,t :: ByteString
t) | Char -> Bool
isDigit Char
d ->
                                          let (ds :: ByteString
ds,u :: ByteString
u) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isDigit ByteString
t in
                                          ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
u (String
accString -> String -> String
forall a. [a] -> [a] -> [a]
++'e'Char -> String -> String
forall a. a -> [a] -> [a]
: Char
signChar -> String -> String
forall a. a -> [a] -> [a]
: Char
dChar -> String -> String
forall a. a -> [a] -> [a]
:
                                                     ByteString -> String
BS.unpack ByteString
ds)
                            | Char -> Bool
isDigit Char
sign ->
                                  let (ds :: ByteString
ds,u :: ByteString
u) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span Char -> Bool
isDigit ByteString
dt in
                                  ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
u (String
accString -> String -> String
forall a. [a] -> [a] -> [a]
++'e'Char -> String -> String
forall a. a -> [a] -> [a]
: Char
signChar -> String -> String
forall a. a -> [a] -> [a]
: ByteString -> String
BS.unpack ByteString
ds)
                        _ -> ByteString -> String -> Result ByteString String
forall z a. z -> String -> Result z a
Failure ByteString
s' ("missing +/-/digit "
                                        String -> String -> String
forall a. [a] -> [a] -> [a]
++"after e in float literal: "
                                        String -> String -> String
forall a. [a] -> [a] -> [a]
++String -> String
forall a. Show a => a -> String
show (String
accString -> String -> String
forall a. [a] -> [a] -> [a]
++'e'Char -> String -> String
forall a. a -> [a] -> [a]
:"..."))
        _ -> ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
s String
acc

    litString :: String -> ByteString -> Result ByteString String
litString acc :: String
acc s :: ByteString
s = case ByteString -> Maybe (Char, ByteString)
BS.uncons ByteString
s of
        Nothing       -> ByteString -> String -> Result ByteString String
forall z a. z -> String -> Result z a
Failure (ByteString
BS.empty)
                                 ("end of input in string literal "String -> String -> String
forall a. [a] -> [a] -> [a]
++String
acc)
        Just ('\"',r :: ByteString
r) -> ByteString -> String -> Result ByteString String
forall z a. z -> a -> Result z a
Success ByteString
r (String
accString -> String -> String
forall a. [a] -> [a] -> [a]
++"\"")
        Just ('\\',r :: ByteString
r) -> let (P lit :: ByteString -> Result ByteString Char
lit) = Parser Char
parseLitChar
                         in case ByteString -> Result ByteString Char
lit ByteString
s of
                              Failure a :: ByteString
a b :: String
b  -> ByteString -> String -> Result ByteString String
forall z a. z -> String -> Result z a
Failure ByteString
a String
b
                              Success t :: ByteString
t char :: Char
char ->
                                  let (u :: ByteString
u,v :: ByteString
v) = (Char -> Bool) -> ByteString -> (ByteString, ByteString)
BS.span (Char -> String -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`notElem`"\\\"") ByteString
t
                                  in  String -> ByteString -> Result ByteString String
litString (String
accString -> String -> String
forall a. [a] -> [a] -> [a]
++[Char
char]String -> String -> String
forall a. [a] -> [a] -> [a]
++ByteString -> String
BS.unpack ByteString
u) ByteString
v
        Just (_,r :: ByteString
r)    -> String -> Result ByteString String
forall a. HasCallStack => String -> a
error "Text.Parse.word(litString) - can't happen"


-- | Ensure that the next input word is the given string.  (Note the input
--   is lexed as haskell, so wordbreaks at spaces, symbols, etc.)
isWord :: String -> TextParser String
isWord :: String -> TextParser String
isWord w :: String
w = do { String
w' <- TextParser String
word
              ; if String
w'String -> String -> Bool
forall a. Eq a => a -> a -> Bool
==String
w then String -> TextParser String
forall (m :: * -> *) a. Monad m => a -> m a
return String
w else String -> TextParser String
forall (m :: * -> *) a. MonadFail m => String -> m a
fail ("expected "String -> String -> String
forall a. [a] -> [a] -> [a]
++String
wString -> String -> String
forall a. [a] -> [a] -> [a]
++" got "String -> String -> String
forall a. [a] -> [a] -> [a]
++String
w')
              }

-- | Ensure that the next input word is the given string.  (No
--   lexing, so mixed spaces, symbols, are accepted.)
literal :: String -> TextParser String
literal :: String -> TextParser String
literal w :: String
w = do { String
w' <- Int -> Parser Char -> TextParser String
forall (p :: * -> *) a. PolyParse p => Int -> p a -> p [a]
exactly (String -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length String
w) Parser Char
next
               ; if String
w'String -> String -> Bool
forall a. Eq a => a -> a -> Bool
==String
w then String -> TextParser String
forall (m :: * -> *) a. Monad m => a -> m a
return String
w
                          else String -> TextParser String
forall (m :: * -> *) a. MonadFail m => String -> m a
fail ("expected "String -> String -> String
forall a. [a] -> [a] -> [a]
++String
wString -> String -> String
forall a. [a] -> [a] -> [a]
++" got "String -> String -> String
forall a. [a] -> [a] -> [a]
++String
w')
               }

-- | Allow optional nested string parens around an item.
optionalParens :: TextParser a -> TextParser a
optionalParens :: TextParser a -> TextParser a
optionalParens p :: TextParser a
p = Bool -> TextParser a -> TextParser a
forall a. Bool -> TextParser a -> TextParser a
parens Bool
False TextParser a
p

-- | Allow nested parens around an item (one set required when Bool is True).
parens :: Bool -> TextParser a -> TextParser a
parens :: Bool -> TextParser a -> TextParser a
parens True  p :: TextParser a
p = TextParser String
-> TextParser String -> TextParser a -> TextParser a
forall (p :: * -> *) bra ket a.
PolyParse p =>
p bra -> p ket -> p a -> p a
bracket (String -> TextParser String
isWord "(") (String -> TextParser String
isWord ")") (Bool -> TextParser a -> TextParser a
forall a. Bool -> TextParser a -> TextParser a
parens Bool
False TextParser a
p)
parens False p :: TextParser a
p = Bool -> TextParser a -> TextParser a
forall a. Bool -> TextParser a -> TextParser a
parens Bool
True TextParser a
p TextParser a -> TextParser a -> TextParser a
forall a. Parser a -> Parser a -> Parser a
`onFail` TextParser a
p

-- | Deal with named field syntax.  The string argument is the field name,
--   and the parser returns the value of the field.
field :: Parse a => String -> TextParser a
field :: String -> TextParser a
field name :: String
name = do { String -> TextParser String
isWord String
name; TextParser a -> TextParser a
forall (p :: * -> *) a. Commitment p => p a -> p a
commit (TextParser a -> TextParser a) -> TextParser a -> TextParser a
forall a b. (a -> b) -> a -> b
$ do { String -> TextParser String
isWord "="; TextParser a
forall a. Parse a => TextParser a
parse } }

-- | Parse one of a bunch of alternative constructors.  In the list argument,
--   the first element of the pair is the constructor name, and
--   the second is the parser for the rest of the value.  The first matching
--   parse is returned.
constructors :: [(String,TextParser a)] -> TextParser a
constructors :: [(String, TextParser a)] -> TextParser a
constructors cs :: [(String, TextParser a)]
cs = [(String, TextParser a)] -> TextParser a
forall (p :: * -> *) a. Commitment p => [(String, p a)] -> p a
oneOf' (((String, TextParser a) -> (String, TextParser a))
-> [(String, TextParser a)] -> [(String, TextParser a)]
forall a b. (a -> b) -> [a] -> [b]
map (String, TextParser a) -> (String, TextParser a)
forall b. (String, Parser b) -> (String, Parser b)
cons [(String, TextParser a)]
cs)
    where cons :: (String, Parser b) -> (String, Parser b)
cons (name :: String
name,p :: Parser b
p) =
               ( String
name
               , do { String -> TextParser String
isWord String
name
                    ; Parser b
p Parser b -> (String -> String) -> Parser b
forall (p :: * -> *) a.
PolyParse p =>
p a -> (String -> String) -> p a
`adjustErrBad` (("got constructor, but within "
                                        String -> String -> String
forall a. [a] -> [a] -> [a]
++String
nameString -> String -> String
forall a. [a] -> [a] -> [a]
++",\n")String -> String -> String
forall a. [a] -> [a] -> [a]
++)
                    }
               )

-- | Parse one of the given nullary constructors (an enumeration).
--   The string argument is the name of the type, and the list argument
--   should contain all of the possible enumeration values.
enumeration :: (Show a) => String -> [a] -> TextParser a
enumeration :: String -> [a] -> TextParser a
enumeration typ :: String
typ cs :: [a]
cs = [TextParser a] -> TextParser a
forall (p :: * -> *) a. PolyParse p => [p a] -> p a
oneOf ((a -> TextParser a) -> [a] -> [TextParser a]
forall a b. (a -> b) -> [a] -> [b]
map (\c :: a
c-> do { String -> TextParser String
isWord (a -> String
forall a. Show a => a -> String
show a
c); a -> TextParser a
forall (m :: * -> *) a. Monad m => a -> m a
return a
c }) [a]
cs)
                         TextParser a -> (String -> String) -> TextParser a
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr`
                     (String -> String -> String
forall a. [a] -> [a] -> [a]
++("\n  expected "String -> String -> String
forall a. [a] -> [a] -> [a]
++String
typString -> String -> String
forall a. [a] -> [a] -> [a]
++" value ("String -> String -> String
forall a. [a] -> [a] -> [a]
++String
eString -> String -> String
forall a. [a] -> [a] -> [a]
++")"))
    where e :: String
e = [String] -> String
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat (String -> [String] -> [String]
forall a. a -> [a] -> [a]
intersperse ", " ((a -> String) -> [a] -> [String]
forall a b. (a -> b) -> [a] -> [b]
map a -> String
forall a. Show a => a -> String
show ([a] -> [a]
forall a. [a] -> [a]
init [a]
cs)))
              String -> String -> String
forall a. [a] -> [a] -> [a]
++ ", or " String -> String -> String
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show ([a] -> a
forall a. [a] -> a
last [a]
cs)

------------------------------------------------------------------------
-- Instances for all the Standard Prelude types.

-- Numeric types

-- | For any numeric parser, permit a negation sign in front of it.
parseSigned :: Real a => TextParser a -> TextParser a
parseSigned :: TextParser a -> TextParser a
parseSigned p :: TextParser a
p = do Char
'-' <- Parser Char
next; TextParser a -> TextParser a
forall (p :: * -> *) a. Commitment p => p a -> p a
commit ((a -> a) -> TextParser a -> TextParser a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Num a => a -> a
negate TextParser a
p)
                TextParser a -> TextParser a -> TextParser a
forall a. Parser a -> Parser a -> Parser a
`onFail`
                do TextParser a
p

-- | Parse any (unsigned) Integral numeric literal.
--   Needs a base, radix, isDigit predicate,
--   and digitToInt converter, appropriate to the result type.
parseInt :: (Integral a) => String ->
                            a -> (Char -> Bool) -> (Char -> Int) ->
                            TextParser a
parseInt :: String -> a -> (Char -> Bool) -> (Char -> Int) -> TextParser a
parseInt base :: String
base radix :: a
radix isDigit :: Char -> Bool
isDigit digitToInt :: Char -> Int
digitToInt =
                 do String
cs <- Parser Char -> TextParser String
forall (p :: * -> *) a. PolyParse p => p a -> p [a]
many1 ((Char -> Bool) -> Parser Char
satisfy Char -> Bool
isDigit)
                    a -> TextParser a
forall (m :: * -> *) a. Monad m => a -> m a
return ((a -> a -> a) -> [a] -> a
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldl1 (\n :: a
n d :: a
d-> a
na -> a -> a
forall a. Num a => a -> a -> a
*a
radixa -> a -> a
forall a. Num a => a -> a -> a
+a
d)
                                   ((Char -> a) -> String -> [a]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> a
forall a b. (Integral a, Num b) => a -> b
fromIntegral(Int -> a) -> (Char -> Int) -> Char -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Char -> Int
digitToInt) String
cs))
                 TextParser a -> (String -> String) -> TextParser a
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` (String -> String -> String
forall a. [a] -> [a] -> [a]
++("\nexpected one or more "String -> String -> String
forall a. [a] -> [a] -> [a]
++String
baseString -> String -> String
forall a. [a] -> [a] -> [a]
++" digits"))

-- | Parse a decimal, octal, or hexadecimal (unsigned) Integral numeric literal.
parseDec, parseOct, parseHex :: (Integral a) => TextParser a
parseDec :: TextParser a
parseDec = String -> a -> (Char -> Bool) -> (Char -> Int) -> TextParser a
forall a.
Integral a =>
String -> a -> (Char -> Bool) -> (Char -> Int) -> TextParser a
parseInt "decimal" 10 Char -> Bool
Char.isDigit    Char -> Int
Char.digitToInt
parseOct :: TextParser a
parseOct = String -> a -> (Char -> Bool) -> (Char -> Int) -> TextParser a
forall a.
Integral a =>
String -> a -> (Char -> Bool) -> (Char -> Int) -> TextParser a
parseInt "octal"    8 Char -> Bool
Char.isOctDigit Char -> Int
Char.digitToInt
parseHex :: TextParser a
parseHex = String -> a -> (Char -> Bool) -> (Char -> Int) -> TextParser a
forall a.
Integral a =>
String -> a -> (Char -> Bool) -> (Char -> Int) -> TextParser a
parseInt "hex"     16 Char -> Bool
Char.isHexDigit Char -> Int
Char.digitToInt

-- | parseUnsignedInteger uses the underlying ByteString readInteger, so
--   will be a lot faster than the generic character-by-character parseInt.
parseUnsignedInteger :: TextParser Integer
parseUnsignedInteger :: TextParser Integer
parseUnsignedInteger = (ByteString -> Result ByteString Integer) -> TextParser Integer
forall a. (ByteString -> Result ByteString a) -> Parser a
P (\bs :: ByteString
bs -> case ByteString -> Maybe (Char, ByteString)
BS.uncons ByteString
bs of
                                 Just (c :: Char
c, _)
                                  | Char -> Bool
Char.isDigit Char
c ->
                                     case ByteString -> Maybe (Integer, ByteString)
BS.readInteger ByteString
bs of
                                     Just (i :: Integer
i, bs' :: ByteString
bs') -> ByteString -> Integer -> Result ByteString Integer
forall z a. z -> a -> Result z a
Success ByteString
bs' Integer
i
                                     Nothing -> String -> Result ByteString Integer
forall a. HasCallStack => String -> a
error "XXX Can't happen"
                                 _ -> ByteString -> String -> Result ByteString Integer
forall z a. z -> String -> Result z a
Failure ByteString
bs "parsing Integer: not a digit")
               TextParser Integer -> (String -> String) -> TextParser Integer
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` (String -> String -> String
forall a. [a] -> [a] -> [a]
++("\nexpected one or more decimal digits"))

-- | Parse any (unsigned) Floating numeric literal, e.g. Float or Double.
parseFloat :: (RealFrac a) => TextParser a
parseFloat :: TextParser a
parseFloat = do ByteString
ds   <- (Char -> Bool) -> Parser ByteString
many1Satisfy Char -> Bool
isDigit
                ByteString
frac <- (do Char
'.' <- Parser Char
next
                            (Char -> Bool) -> Parser ByteString
manySatisfy Char -> Bool
isDigit
                              Parser ByteString -> (String -> String) -> Parser ByteString
forall (p :: * -> *) a.
PolyParse p =>
p a -> (String -> String) -> p a
`adjustErrBad` (String -> String -> String
forall a. [a] -> [a] -> [a]
++"expected digit after .")
                         Parser ByteString -> Parser ByteString -> Parser ByteString
forall a. Parser a -> Parser a -> Parser a
`onFail` ByteString -> Parser ByteString
forall (m :: * -> *) a. Monad m => a -> m a
return ByteString
BS.empty )
                Int64
exp  <- Parser Int64
exponent Parser Int64 -> Parser Int64 -> Parser Int64
forall a. Parser a -> Parser a -> Parser a
`onFail` Int64 -> Parser Int64
forall (m :: * -> *) a. Monad m => a -> m a
return 0
                ( a -> TextParser a
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> TextParser a)
-> (ByteString -> a) -> ByteString -> TextParser a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rational -> a
forall a. Fractional a => Rational -> a
fromRational (Rational -> a) -> (ByteString -> Rational) -> ByteString -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
* (10Rational -> Int64 -> Rational
forall a b. (Fractional a, Integral b) => a -> b -> a
^^(Int64
exp Int64 -> Int64 -> Int64
forall a. Num a => a -> a -> a
- ByteString -> Int64
BS.length ByteString
frac)))
                  (Rational -> Rational)
-> (ByteString -> Rational) -> ByteString -> Rational
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
%1) (Integer -> Rational)
-> (ByteString -> Integer) -> ByteString -> Rational
forall b c a. (b -> c) -> (a -> b) -> a -> c
.  (\ (Right x :: Integer
x)->Integer
x) (Either String Integer -> Integer)
-> (ByteString -> Either String Integer) -> ByteString -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Either String Integer, ByteString) -> Either String Integer
forall a b. (a, b) -> a
fst
                  ((Either String Integer, ByteString) -> Either String Integer)
-> (ByteString -> (Either String Integer, ByteString))
-> ByteString
-> Either String Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TextParser Integer
-> ByteString -> (Either String Integer, ByteString)
forall a. Parser a -> ByteString -> (Either String a, ByteString)
runParser TextParser Integer
forall a. Integral a => TextParser a
parseDec ) (ByteString
ds ByteString -> ByteString -> ByteString
`BS.append` ByteString
frac)
             TextParser a -> TextParser a -> TextParser a
forall a. Parser a -> Parser a -> Parser a
`onFail`
             do ByteString
w <- (Char -> Bool) -> Parser ByteString
manySatisfy Char -> Bool
isAlpha
                case (Char -> Char) -> String -> String
forall a b. (a -> b) -> [a] -> [b]
map Char -> Char
toLower (ByteString -> String
BS.unpack ByteString
w) of
                  "nan"      -> a -> TextParser a
forall (m :: * -> *) a. Monad m => a -> m a
return (0a -> a -> a
forall a. Fractional a => a -> a -> a
/0)
                  "infinity" -> a -> TextParser a
forall (m :: * -> *) a. Monad m => a -> m a
return (1a -> a -> a
forall a. Fractional a => a -> a -> a
/0)
                  _          -> String -> TextParser a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail "expected a floating point number"
  where exponent :: Parser Int64
exponent = do Char
'e' <- (Char -> Char) -> Parser Char -> Parser Char
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Char -> Char
toLower Parser Char
next
                      Parser Int64 -> Parser Int64
forall (p :: * -> *) a. Commitment p => p a -> p a
commit (do Char
'+' <- Parser Char
next; Parser Int64
forall a. Integral a => TextParser a
parseDec
                              Parser Int64 -> Parser Int64 -> Parser Int64
forall a. Parser a -> Parser a -> Parser a
`onFail`
                              Parser Int64 -> Parser Int64
forall a. Real a => TextParser a -> TextParser a
parseSigned Parser Int64
forall a. Integral a => TextParser a
parseDec )

-- | Parse a Haskell character literal, including surrounding single quotes.
parseLitChar' :: TextParser Char
parseLitChar' :: Parser Char
parseLitChar' = do Char
'\'' <- Parser Char
next Parser Char -> (String -> String) -> Parser Char
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` (String -> String -> String
forall a. [a] -> [a] -> [a]
++"expected a literal char")
                   Char
char <- Parser Char
parseLitChar
                   Char
'\'' <- Parser Char
next Parser Char -> (String -> String) -> Parser Char
forall (p :: * -> *) a.
PolyParse p =>
p a -> (String -> String) -> p a
`adjustErrBad` (String -> String -> String
forall a. [a] -> [a] -> [a]
++"literal char has no final '")
                   Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return Char
char

-- | Parse a Haskell character literal, excluding surrounding single quotes.
parseLitChar :: TextParser Char
parseLitChar :: Parser Char
parseLitChar = do Char
c <- Parser Char
next
                  Char
char <- case Char
c of
                            '\\' -> Parser Char
next Parser Char -> (Char -> Parser Char) -> Parser Char
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Char -> Parser Char
escape
                            '\'' -> String -> Parser Char
forall (m :: * -> *) a. MonadFail m => String -> m a
fail "expected a literal char, got ''"
                            _    -> Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return Char
c
                  Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return Char
char

  where
    escape :: Char -> Parser Char
escape 'a'  = Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\a'
    escape 'b'  = Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\b'
    escape 'f'  = Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\f'
    escape 'n'  = Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\n'
    escape 'r'  = Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\r'
    escape 't'  = Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\t'
    escape 'v'  = Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\v'
    escape '\\' = Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\\'
    escape '"'  = Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '"'
    escape '\'' = Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\''
    escape '^'  = do Char
ctrl <- Parser Char
next
                     if Char
ctrl Char -> Char -> Bool
forall a. Ord a => a -> a -> Bool
>= '@' Bool -> Bool -> Bool
&& Char
ctrl Char -> Char -> Bool
forall a. Ord a => a -> a -> Bool
<= '_'
                       then Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Char
chr (Char -> Int
ord Char
ctrl Int -> Int -> Int
forall a. Num a => a -> a -> a
- Char -> Int
ord '@'))
                       else String -> Parser Char
forall (m :: * -> *) a. MonadFail m => String -> m a
fail ("literal char ctrl-escape malformed: \\^"
                                   String -> String -> String
forall a. [a] -> [a] -> [a]
++[Char
ctrl])
    escape d :: Char
d | Char -> Bool
isDigit Char
d
                = (Int -> Char) -> Parser Int -> Parser Char
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> Char
chr (Parser Int -> Parser Char) -> Parser Int -> Parser Char
forall a b. (a -> b) -> a -> b
$  (ByteString -> Parser ()
reparse (String -> ByteString
BS.pack [Char
d]) Parser () -> Parser Int -> Parser Int
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Parser Int
forall a. Integral a => TextParser a
parseDec)
    escape 'o'  = (Int -> Char) -> Parser Int -> Parser Char
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> Char
chr (Parser Int -> Parser Char) -> Parser Int -> Parser Char
forall a b. (a -> b) -> a -> b
$  Parser Int
forall a. Integral a => TextParser a
parseOct
    escape 'x'  = (Int -> Char) -> Parser Int -> Parser Char
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> Char
chr (Parser Int -> Parser Char) -> Parser Int -> Parser Char
forall a b. (a -> b) -> a -> b
$  Parser Int
forall a. Integral a => TextParser a
parseHex
    escape c :: Char
c | Char -> Bool
isUpper Char
c
                = Char -> Parser Char
mnemonic Char
c
    escape c :: Char
c    = String -> Parser Char
forall (m :: * -> *) a. MonadFail m => String -> m a
fail ("unrecognised escape sequence in literal char: \\"String -> String -> String
forall a. [a] -> [a] -> [a]
++[Char
c])

    mnemonic :: Char -> Parser Char
mnemonic 'A' = do Char
'C' <- Parser Char
next; Char
'K' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\ACK'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\ACK'"
    mnemonic 'B' = do Char
'E' <- Parser Char
next; Char
'L' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\BEL'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'S' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\BS'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\BEL' or '\\BS'"
    mnemonic 'C' = do Char
'R' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\CR'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'A' <- Parser Char
next; Char
'N' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\CAN'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\CR' or '\\CAN'"
    mnemonic 'D' = do Char
'E' <- Parser Char
next; Char
'L' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\DEL'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'L' <- Parser Char
next; Char
'E' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\DLE'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'C' <- Parser Char
next; ( do Char
'1' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\DC1'
                                     Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                                     do Char
'2' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\DC2'
                                     Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                                     do Char
'3' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\DC3'
                                     Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                                     do Char
'4' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\DC4' )
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\DEL' or '\\DLE' or '\\DC[1..4]'"
    mnemonic 'E' = do Char
'T' <- Parser Char
next; Char
'X' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\ETX'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'O' <- Parser Char
next; Char
'T' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\EOT'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'N' <- Parser Char
next; Char
'Q' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\ENQ'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'T' <- Parser Char
next; Char
'B' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\ETB'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'M' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\EM'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'S' <- Parser Char
next; Char
'C' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\ESC'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "one of '\\ETX' '\\EOT' '\\ENQ' '\\ETB' '\\EM' or '\\ESC'"
    mnemonic 'F' = do Char
'F' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\FF'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'S' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\FS'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\FF' or '\\FS'"
    mnemonic 'G' = do Char
'S' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\GS'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\GS'"
    mnemonic 'H' = do Char
'T' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\HT'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\HT'"
    mnemonic 'L' = do Char
'F' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\LF'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\LF'"
    mnemonic 'N' = do Char
'U' <- Parser Char
next; Char
'L' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\NUL'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'A' <- Parser Char
next; Char
'K' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\NAK'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\NUL' or '\\NAK'"
    mnemonic 'R' = do Char
'S' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\RS'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\RS'"
    mnemonic 'S' = do Char
'O' <- Parser Char
next; Char
'H' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\SOH'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'O' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\SO'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'T' <- Parser Char
next; Char
'X' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\STX'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'I' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\SI'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'Y' <- Parser Char
next; Char
'N' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\SYN'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'U' <- Parser Char
next; Char
'B' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\SUB'
                   Parser Char -> Parser Char -> Parser Char
forall a. Parser a -> Parser a -> Parser a
`onFail`
                   do Char
'P' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\SP'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\SOH' '\\SO' '\\STX' '\\SI' '\\SYN' '\\SUB' or '\\SP'"
    mnemonic 'U' = do Char
'S' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\US'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\US'"
    mnemonic 'V' = do Char
'T' <- Parser Char
next; Char -> Parser Char
forall (m :: * -> *) a. Monad m => a -> m a
return '\VT'
                   Parser Char -> String -> Parser Char
forall a. Parser a -> String -> Parser a
`wrap` "'\\VT'"
    wrap :: Parser a -> String -> Parser a
wrap p :: Parser a
p s :: String
s = Parser a
p Parser a -> Parser a -> Parser a
forall a. Parser a -> Parser a -> Parser a
`onFail` String -> Parser a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail ("expected literal char "String -> String -> String
forall a. [a] -> [a] -> [a]
++String
s)

-- Basic types
instance Parse Int where
    parse :: Parser Int
parse = (Integer -> Int) -> TextParser Integer -> Parser Int
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Integer -> Int
forall a. Num a => Integer -> a
fromInteger (TextParser Integer -> Parser Int)
-> TextParser Integer -> Parser Int
forall a b. (a -> b) -> a -> b
$	-- convert from Integer, deals with minInt
              do (Char -> Bool) -> Parser ByteString
manySatisfy Char -> Bool
isSpace; TextParser Integer -> TextParser Integer
forall a. Real a => TextParser a -> TextParser a
parseSigned TextParser Integer
parseUnsignedInteger
instance Parse Integer where
    parse :: TextParser Integer
parse = do (Char -> Bool) -> Parser ByteString
manySatisfy Char -> Bool
isSpace; TextParser Integer -> TextParser Integer
forall a. Real a => TextParser a -> TextParser a
parseSigned TextParser Integer
parseUnsignedInteger
instance Parse Float where
    parse :: TextParser Float
parse = do (Char -> Bool) -> Parser ByteString
manySatisfy Char -> Bool
isSpace; TextParser Float -> TextParser Float
forall a. Real a => TextParser a -> TextParser a
parseSigned TextParser Float
forall a. RealFrac a => TextParser a
parseFloat
instance Parse Double where
    parse :: TextParser Double
parse = do (Char -> Bool) -> Parser ByteString
manySatisfy Char -> Bool
isSpace; TextParser Double -> TextParser Double
forall a. Real a => TextParser a -> TextParser a
parseSigned TextParser Double
forall a. RealFrac a => TextParser a
parseFloat
instance Parse Char where
    parse :: Parser Char
parse = do (Char -> Bool) -> Parser ByteString
manySatisfy Char -> Bool
isSpace; Parser Char
parseLitChar'
	-- not totally correct for strings...
    parseList :: TextParser String
parseList = do { String
w <- TextParser String
word; if String -> Char
forall a. [a] -> a
head String
w Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
== '"' then String -> TextParser String
forall (m :: * -> *) a. Monad m => a -> m a
return (String -> String
forall a. [a] -> [a]
init (String -> String
forall a. [a] -> [a]
tail String
w))
                                else String -> TextParser String
forall (m :: * -> *) a. MonadFail m => String -> m a
fail "not a string" }

instance Parse Bool where
    parse :: TextParser Bool
parse = String -> [Bool] -> TextParser Bool
forall a. Show a => String -> [a] -> TextParser a
enumeration "Bool" [Bool
False,Bool
True]

instance Parse Ordering where
    parse :: TextParser Ordering
parse = String -> [Ordering] -> TextParser Ordering
forall a. Show a => String -> [a] -> TextParser a
enumeration "Ordering" [Ordering
LT,Ordering
EQ,Ordering
GT]

-- Structural types
instance Parse () where
    parse :: Parser ()
parse = (ByteString -> Result ByteString ()) -> Parser ()
forall a. (ByteString -> Result ByteString a) -> Parser a
P (Maybe (Char, ByteString) -> Result ByteString ()
p (Maybe (Char, ByteString) -> Result ByteString ())
-> (ByteString -> Maybe (Char, ByteString))
-> ByteString
-> Result ByteString ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ByteString -> Maybe (Char, ByteString)
BS.uncons)
      where p :: Maybe (Char, ByteString) -> Result ByteString ()
p Nothing         = ByteString -> String -> Result ByteString ()
forall z a. z -> String -> Result z a
Failure ByteString
BS.empty "no input: expected a ()"
            p (Just ('(',cs :: ByteString
cs)) = case ByteString -> Maybe (Char, ByteString)
BS.uncons ((Char -> Bool) -> ByteString -> ByteString
BS.dropWhile Char -> Bool
isSpace ByteString
cs) of
                                Just (')',s :: ByteString
s) -> ByteString -> () -> Result ByteString ()
forall z a. z -> a -> Result z a
Success ByteString
s ()
                                _            -> ByteString -> String -> Result ByteString ()
forall z a. z -> String -> Result z a
Failure ByteString
cs "Expected ) after ("
            p (Just (c :: Char
c,cs :: ByteString
cs))   | Char -> Bool
isSpace Char
c = Maybe (Char, ByteString) -> Result ByteString ()
p (ByteString -> Maybe (Char, ByteString)
BS.uncons ByteString
cs)
                              | Bool
otherwise = ByteString -> String -> Result ByteString ()
forall z a. z -> String -> Result z a
Failure (Char -> ByteString -> ByteString
BS.cons Char
c ByteString
cs)
                                                ("Expected a (), got "String -> String -> String
forall a. [a] -> [a] -> [a]
++Char -> String
forall a. Show a => a -> String
show Char
c)

instance (Parse a, Parse b) => Parse (a,b) where
    parse :: TextParser (a, b)
parse = do{ String -> TextParser String
isWord "(" TextParser String -> (String -> String) -> TextParser String
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("Opening a 2-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; a
x <- TextParser a
forall a. Parse a => TextParser a
parse TextParser a -> (String -> String) -> TextParser a
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("In 1st item of a 2-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; String -> TextParser String
isWord "," TextParser String -> (String -> String) -> TextParser String
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("Separating a 2-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; b
y <- TextParser b
forall a. Parse a => TextParser a
parse TextParser b -> (String -> String) -> TextParser b
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("In 2nd item of a 2-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; String -> TextParser String
isWord ")" TextParser String -> (String -> String) -> TextParser String
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("Closing a 2-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; (a, b) -> TextParser (a, b)
forall (m :: * -> *) a. Monad m => a -> m a
return (a
x,b
y) }

instance (Parse a, Parse b, Parse c) => Parse (a,b,c) where
    parse :: TextParser (a, b, c)
parse = do{ String -> TextParser String
isWord "(" TextParser String -> (String -> String) -> TextParser String
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("Opening a 3-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; a
x <- TextParser a
forall a. Parse a => TextParser a
parse TextParser a -> (String -> String) -> TextParser a
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("In 1st item of a 3-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; String -> TextParser String
isWord "," TextParser String -> (String -> String) -> TextParser String
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("Separating(1) a 3-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; b
y <- TextParser b
forall a. Parse a => TextParser a
parse TextParser b -> (String -> String) -> TextParser b
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("In 2nd item of a 3-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; String -> TextParser String
isWord "," TextParser String -> (String -> String) -> TextParser String
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("Separating(2) a 3-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; c
z <- TextParser c
forall a. Parse a => TextParser a
parse TextParser c -> (String -> String) -> TextParser c
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("In 3rd item of a 3-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; String -> TextParser String
isWord ")" TextParser String -> (String -> String) -> TextParser String
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` ("Closing a 3-tuple\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)
              ; (a, b, c) -> TextParser (a, b, c)
forall (m :: * -> *) a. Monad m => a -> m a
return (a
x,b
y,c
z) }

instance Parse a => Parse (Maybe a) where
    parsePrec :: Int -> TextParser (Maybe a)
parsePrec p :: Int
p =
            TextParser (Maybe a) -> TextParser (Maybe a)
forall a. TextParser a -> TextParser a
optionalParens (do { String -> TextParser String
isWord "Nothing"; Maybe a -> TextParser (Maybe a)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe a
forall a. Maybe a
Nothing })
            TextParser (Maybe a)
-> TextParser (Maybe a) -> TextParser (Maybe a)
forall a. Parser a -> Parser a -> Parser a
`onFail`
            Bool -> TextParser (Maybe a) -> TextParser (Maybe a)
forall a. Bool -> TextParser a -> TextParser a
parens (Int
pInt -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>9)   (do { String -> TextParser String
isWord "Just"
                               ; (a -> Maybe a) -> Parser a -> TextParser (Maybe a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Maybe a
forall a. a -> Maybe a
Just (Parser a -> TextParser (Maybe a))
-> Parser a -> TextParser (Maybe a)
forall a b. (a -> b) -> a -> b
$ Int -> Parser a
forall a. Parse a => Int -> TextParser a
parsePrec 10
                                     Parser a -> (String -> String) -> Parser a
forall (p :: * -> *) a.
PolyParse p =>
p a -> (String -> String) -> p a
`adjustErrBad` ("but within Just, "String -> String -> String
forall a. [a] -> [a] -> [a]
++) })
            TextParser (Maybe a) -> (String -> String) -> TextParser (Maybe a)
forall (p :: * -> *) a.
Commitment p =>
p a -> (String -> String) -> p a
`adjustErr` (("expected a Maybe (Just or Nothing)\n"String -> String -> String
forall a. [a] -> [a] -> [a]
++)(String -> String) -> (String -> String) -> String -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Int -> String -> String
indent 2)

instance (Parse a, Parse b) => Parse (Either a b) where
    parsePrec :: Int -> TextParser (Either a b)
parsePrec p :: Int
p =
            Bool -> TextParser (Either a b) -> TextParser (Either a b)
forall a. Bool -> TextParser a -> TextParser a
parens (Int
pInt -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>9) (TextParser (Either a b) -> TextParser (Either a b))
-> TextParser (Either a b) -> TextParser (Either a b)
forall a b. (a -> b) -> a -> b
$
            [(String, TextParser (Either a b))] -> TextParser (Either a b)
forall a. [(String, TextParser a)] -> TextParser a
constructors [ ("Left",  do { (a -> Either a b) -> Parser a -> TextParser (Either a b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Either a b
forall a b. a -> Either a b
Left  (Parser a -> TextParser (Either a b))
-> Parser a -> TextParser (Either a b)
forall a b. (a -> b) -> a -> b
$ Int -> Parser a
forall a. Parse a => Int -> TextParser a
parsePrec 10 } )
                         , ("Right", do { (b -> Either a b) -> Parser b -> TextParser (Either a b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> Either a b
forall a b. b -> Either a b
Right (Parser b -> TextParser (Either a b))
-> Parser b -> TextParser (Either a b)
forall a b. (a -> b) -> a -> b
$ Int -> Parser b
forall a. Parse a => Int -> TextParser a
parsePrec 10 } )
                         ]

instance Parse a => Parse [a] where
    parse :: TextParser [a]
parse = TextParser [a]
forall a. Parse a => TextParser [a]
parseList

------------------------------------------------------------------------
-- ByteStrings as a whole entity.

-- | Simply return the remaining input ByteString.
allAsByteString :: TextParser ByteString
allAsByteString :: Parser ByteString
allAsByteString =  (ByteString -> Result ByteString ByteString) -> Parser ByteString
forall a. (ByteString -> Result ByteString a) -> Parser a
P (\bs :: ByteString
bs-> ByteString -> ByteString -> Result ByteString ByteString
forall z a. z -> a -> Result z a
Success ByteString
BS.empty ByteString
bs)

-- | Simply return the remaining input as a String.
allAsString     :: TextParser String
allAsString :: TextParser String
allAsString     =  (ByteString -> String) -> Parser ByteString -> TextParser String
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ByteString -> String
BS.unpack Parser ByteString
allAsByteString

------------------------------------------------------------------------